Radius selection using kernel density estimation for the computation of nonlinear measures

نویسندگان

چکیده

When nonlinear measures are estimated from sampled temporal signals with finite-length, a radius parameter must be carefully selected to avoid poor estimation. These generally derived the correlation integral, which quantifies probability of finding neighbors, i.e., pair points spaced by less than parameter. While each measure comes several specific empirical rules select value, we provide systematic selection method. We show that optimal for can approximated bandwidth Kernel Density Estimator (KDE) related sum. The KDE framework provides non-parametric tools approximate density function finite samples (e.g., histograms) and methods smoothing parameter, bin width in histograms). use results derive closed-form expression radius. latter is used compute dimension construct recurrence plots yielding an estimate Kolmogorov–Sinai entropy. assess our method through numerical experiments on generated systems experimental electroencephalographic time series.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC

Kernel density estimation for multivariate data is an important technique that has a wide range of applications in econometrics and finance. However, it has received significantly less attention than its univariate counterpart. The lower level of interest in multivariate kernel density estimation is mainly due to the increased difficulty in deriving an optimal datadriven bandwidth as the dimens...

متن کامل

Bandwidth Selection for Weighted Kernel Density Estimation

Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation me...

متن کامل

Optimal kernel selection for density estimation

We provide new general kernel selection rules thanks to penalized least-squares criteria. We derive optimal oracle inequalities using adequate concentration tools. We also investigate the problem of minimal penalty as described in [BM07].

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

the test for adverse selection in life insurance market: the case of mellat insurance company

انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos

سال: 2021

ISSN: ['1527-2443', '1089-7682', '1054-1500']

DOI: https://doi.org/10.1063/5.0055797